Criss-Cross Algorithm for Support Vector Machines

Paulovics, Péter (2022) Criss-Cross Algorithm for Support Vector Machines. Outstanding Student Paper, BCE, Gazdaságelemzés és gazdaságmodellezés. Szabadon elérhető változat / Unrestricted version: http://publikaciok.lib.uni-corvinus.hu/publikus/tdk/paulovics_p_2022.pdf

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
700kB

Free and unrestricted access: http://publikaciok.lib.uni-corvinus.hu/publikus/tdk/paulovics_p_2022.pdf

Abstract

The Support Vector Machine is a popular family of machine learning models for classification problems. Its goal of finding maximum-margin separating hyperplanes results in a quadratic programming problem. We examine the specific properties of the problem from the perspective of mathematical optimization and whether it can be reformulated as a linear complementarity problem. We also present a new variant of the quadratic criss-cross algorithm of Klafszky and Terlaky adapted to the special structure of the optimization problem of the Support Vector Machine.

Item Type:Outstanding Student Paper
Notes:1. díj
Subjects:Mathematics. Econometrics
ID Code:15464
Specialisation:Gazdaság- és pénzügy-matematikai elemzés
Deposited On:27 Apr 2023 12:23
Last Modified:27 Apr 2023 12:23

Repository Staff Only: item control page