Paulovics, Péter (2022) Criss-Cross Algorithm for Support Vector Machines. Outstanding Student Paper, BCE, Gazdaságelemzés és gazdaságmodellezés. Szabadon elérhető változat / Unrestricted version: http://publikaciok.lib.uni-corvinus.hu/publikus/tdk/paulovics_p_2022.pdf
|
PDF
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
700kB |
Free and unrestricted access: http://publikaciok.lib.uni-corvinus.hu/publikus/tdk/paulovics_p_2022.pdf
Abstract
The Support Vector Machine is a popular family of machine learning models for classification problems. Its goal of finding maximum-margin separating hyperplanes results in a quadratic programming problem. We examine the specific properties of the problem from the perspective of mathematical optimization and whether it can be reformulated as a linear complementarity problem. We also present a new variant of the quadratic criss-cross algorithm of Klafszky and Terlaky adapted to the special structure of the optimization problem of the Support Vector Machine.
Item Type: | Outstanding Student Paper |
---|---|
Notes: | 1. díj |
Subjects: | Mathematics. Econometrics |
ID Code: | 15464 |
Specialisation: | Gazdaság- és pénzügy-matematikai elemzés |
Deposited On: | 27 Apr 2023 12:23 |
Last Modified: | 27 Apr 2023 12:23 |
Repository Staff Only: item control page