Juhász, Kristóf Attila (2020) Stock market prediction using Google Trends data. TDK dolgozat, BCE, Befektetések és Vállalati Pénzügy szekció. Szabadon elérhető változat / Unrestricted version: http://publikaciok.lib.uni-corvinus.hu/publikus/tdk/juhasz_k_a_2020.pdf
|
PDF
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1MB |
Szabadon elérhető változat: http://publikaciok.lib.uni-corvinus.hu/publikus/tdk/juhasz_k_a_2020.pdf
Absztrakt (kivonat)
Since the 2000s sentiment analysis is getting a more and more popular field of research in many areas. My paper examines whether measuring investor attention has a place amongst the investment decision-supporting tools as well. Based on the research of Preis et al. (2013) I will be conducting a case study on how effectively Google search volume could be utilized for stock market predictions. Also, my intention is to create a well-documented and reliable methodology for this fairly new type of prediction technique. While developing my modeling framework, I intend to thoroughly analyze the possibly untouched limitations and overlooked biases involved in the seminal article, and shape a prudent framework for my research accordingly, supported by other best practice examples from this area. To prove the validity of my model (and its results), I will also perform a robustness testing in the end. Finally, I will be listing several points and recommendations which should be considered if one decides to utilize the model in real-time day-to-day trading.
Tétel típus: | TDK dolgozat |
---|---|
Témakör: | Pénzügy |
Azonosító kód: | 13192 |
Képzés/szak: | Finance |
Elhelyezés dátuma: | 26 Nov 2020 12:25 |
Utolsó változtatás: | 06 Dec 2021 09:43 |
Csak a repozitórium munkatársainak: tétel módosító lap